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Abstract
Benign overfitting, the phenomenon where interpolating models generalize well in the presence

of noisy data, was first observed in neural network models trained with gradient descent. To bet-
ter understand this empirical observation, we consider the generalization error of two-layer neural
networks trained to interpolation by gradient descent on the logistic loss following random initial-
ization. We assume the data comes from well-separated class-conditional log-concave distributions
and allow for a constant fraction of the training labels to be corrupted by an adversary. We show
that in this setting, neural networks exhibit benign overfitting: they can be driven to zero training
error, perfectly fitting any noisy training labels, and simultaneously achieve minimax optimal test
error. In contrast to previous work on benign overfitting that require linear or kernel-based predic-
tors, our analysis holds in a setting where both the model and learning dynamics are fundamentally
nonlinear.

1. Introduction

Trained neural networks have been shown to generalize well to unseen data even when trained
to interpolation (that is, vanishingly small training loss) on training data with significant label
noise (Zhang et al., 2017; Belkin et al., 2019). This empirical observation is surprising as it ap-
pears to violate long standing intuition from statistical learning theory that the greater the capacity
of a model to fit randomly labelled data, the worse the model’s generalization performance on test
data will be. This conflict between theory and practice has led to a surge of theoretical research into
the generalization performance of interpolating statistical models to see if this ‘benign overfitting’
phenomenon can be observed in simpler settings that are more amenable to theoretical investigation.
We now understand that benign overfitting can occur in many classical statistical settings, including
linear regression (Hastie et al., 2019; Bartlett et al., 2020; Muthukumar et al., 2020; Negrea et al.,
2020; Tsigler and Bartlett, 2020; Chinot et al., 2020; Chatterji et al., 2021), sparse linear regres-
sion (Koehler et al., 2021; Chatterji and Long, 2021b; Li and Wei, 2021; Wang et al., 2021a), logistic
regression (Montanari et al., 2019; Chatterji and Long, 2021a; Liang and Sur, 2020; Muthukumar
et al., 2021; Wang et al., 2021b; Minsker et al., 2021), and kernel-based estimators (Belkin et al.,
2018; Mei and Montanari, 2019; Liang and Rakhlin, 2020; Liang et al., 2020), among others, and
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our understanding of when and why this phenomenon occurs in these settings is rapidly increas-
ing. And yet, for the class of models from which the initial motivation for understanding benign
overfitting arose—trained neural networks—we understand remarkably little.

In this work, we consider the class of two-layer networks with smoothed leaky ReLU activa-
tions trained on data coming from a high-dimensional linearly separable dataset where a constant
fraction of the training labels can be adversarially corrupted (Kearns et al., 1994). We demonstrate
that networks trained by standard gradient descent on the logistic loss in this setting exhibit be-
nign overfitting: they can be driven to zero loss, and thus interpolate the noisy training data, and
simultaneously achieve minimax optimal generalization error.

Our results follow by showing that the training loss can be driven to zero while the expected
normalized margin for clean data points is large. The key technical ingredient of the proof for
both of these claims is a ‘loss ratio bound’: we show that the gradient descent dynamics ensure
that the loss of each example decreases at roughly the same rate throughout training. This ensures
that the noisy points cannot have an outsized influence on the training dynamics, so that we can
have control over the normalized margin for clean data points throughout training. At a high-level,
this is possible because the data is high-dimensional, which ensures that all data points are roughly
mutually orthogonal.

Our results hold for finite width networks, and since the logistic loss is driven to zero, the
weights traverse far from their randomly initialized values. As a consequence, this shows benign
overfitting behavior in trained neural networks beyond the kernel regime (Jacot et al., 2018).

1.1. Related Work

A number of recent works have characterized the generalization performance of interpolating mod-
els. Most related to ours are those in the classification setting. Chatterji and Long (2021a) study
the high-dimensional sub-Gaussian mixture model setup we consider here, where labels can be cor-
rupted adversarially, and analyze the performance of the maximum margin linear classifier. They
do so by utilizing recent works that show that the weights found by unregularized gradient descent
on the logistic loss asymptotically approach the maximum margin classifier for linearly separable
data (Soudry et al., 2018; Ji and Telgarsky, 2019). Our proof techniques can be viewed as an exten-
sion of some of the techniques developed by Chatterji and Long in the logistic regression setting to
two-layer neural networks. Muthukumar et al. (2021) study the behavior of the overparameterized
max-margin classifier in a discriminative classification model with label-flipping noise, by connect-
ing the behavior of the max-margin classifier to the ordinary least squares solution. They show that
under certain conditions, all training data points become support vectors of the maximum margin
classifier (see also, Hsu et al., 2021). Following this, Wang and Thrampoulidis (2021) and Cao et al.
(2021) analyze the behavior of the overparameterized max-margin classifier in high dimensional
mixture models by exploiting the connection between the max-margin classifier and the OLS solu-
tion. In contrast with these works, we consider the generalization performance of an interpolating
nonlinear neural network.

A key difficulty in establishing benign overfitting guarantees for trained neural networks lies in
demonstrating that the neural network can interpolate the data. Brutzkus et al. (2018) study SGD
on two-layer networks with leaky ReLU activations and showed that for linearly separable data,
stochastic gradient descent on the hinge loss will converge to zero training loss. They provided
guarantees for the test error provided the number of samples is sufficiently large relative to the input
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dimension and the Bayes error rate is zero, but left open the question of what happens when there
is label noise or when the data is high-dimensional. Frei et al. (2021) show that for linear separable
data with labels corrupted by adversarial label noise (Kearns et al., 1994), SGD on the logistic loss
of two-layer leaky ReLU networks achieves test error that is at most a constant multiple of the
square root of the noise rate under mild distributional assumptions. However, their proof technique
did not allow for the network to be trained to interpolation. In contrast, we allow for the network
to be trained to arbitrarily small loss and hence interpolate noisy data. In principle, this could allow
for the noisy samples to adversely influence the classifier, but we show this does not happen.

A series of recent works have exploited the connection between overparameterized neural net-
works and an infinite width approximation known as the neural tangent kernel (NTK) (Jacot et al.,
2018; Allen-Zhu et al., 2019; Zou et al., 2019; Du et al., 2019; Arora et al., 2019; Soltanolkotabi
et al., 2019). These works show that for a certain scaling regime of the initialization, learning rate,
and width of the network, neural networks trained by gradient descent behave similarly to their
linearization around random initialization and can be well-approximated by the NTK. The near-
linearity simplifies much of the analysis of neural network optimization and generalization. Indeed,
a number of recent works have characterized settings in which neural networks in the kernel regime
can exhibit benign overfitting (Liang et al., 2020; Montanari and Zhong, 2021).

Unfortunately, the kernel approximation fails to meaningfully capture a number of aspects of
neural networks trained in practical settings, such as the ability to learn features (Yang and Hu,
2021), so that previous kernel-based approaches for understanding neural networks provide a quite
restricted viewpoint for understanding neural networks in practice. By contrast, in this work, we
develop an analysis of benign overfitting in finite width neural networks trained for many iterations
on the logistic loss. We show that gradient descent drives the logistic loss to zero so that the weights
grow to infinity, far from the near-initialization region where the kernel approximation holds, while
the network simultaneously maintains a positive margin on clean examples. This provides the first
guarantee for benign overfitting that does not rely upon an effectively linear evolution of the param-
eters.

Finally, we note in a concurrent work Cao et al. (2022) characterize the generalization per-
formance of interpolating two-layer convolutional neural networks. They consider a distribution
where input features consist of two patches, a ‘signal’ patch and a ‘noise’ patch, and binary output
labels are a deterministic function of the signal patch. They show that if the signal-to-noise ratio is
larger than a threshold value then the interpolating network achieves near-zero test error, while if the
signal-to-noise ratio is smaller than the threshold then the interpolating network generalizes poorly.
There are a few key differences in our results. First, our setup allows for a constant fraction of the
training labels to be random, while in their setting the training labels are a deterministic function of
the input features. Achieving near-zero training loss in our setting thus requires overfitting to noisy
labels, in contrast to their setting where such overfitting is not possible. Second, they require the
input dimension to be at least as large as m2 (where m is the number of neurons in the network),
while our results do not make any assumptions on the relationship between the input dimension and
the number of neurons in the network.

2. Preliminaries

In this section we introduce the assumptions on the data generation process, the neural network
architecture, and the optimization algorithm we consider.
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2.1. Notation

We denote the ℓ2 norm of a vector x ∈ Rp by ∥x∥. For a matrix W ∈ Rm×p, we use ∥W∥F
to denote its Frobenius norm and ∥W∥2 to denote its spectral norm, and we denote its rows by
w1, . . . , wm. For an integer n, we use the notation [n] to refer to the set [n] = {1, 2, . . . , n}.

2.2. Setting

We shall let C > 1 denote a positive absolute constant, and our results will hold for all values
of C sufficiently large. We consider a mixture model setting similar to one previously considered
by Chatterji and Long (2021a), defined in terms of a joint distribution P over (x, y) ∈ Rp × {±1}.
Samples from this distribution can have noisy labels, and so we will find it useful to first describe a
‘clean’ distribution P̃ and then define the true distribution P in terms of P̃. Samples (x, y) from P
are constructed as follows:

1. Sample a clean label ỹ ∈ {±1} uniformly at random, ỹ ∼ Uniform({+1,−1}).

2. Sample z ∼ Pclust where

• Pclust = P
(1)
clust×· · ·×P

(p)
clust is a product distribution whose marginals are all mean-zero

with sub-Gaussian norm at most one;

• Pclust is a λ-strongly log-concave distribution over Rp for some λ > 0;1

• for some κ > 0, it holds that Ez∼Pclust
[∥z∥2] ≥ κp.

3. Generate x̃ = z + ỹµ.

4. Then, given a noise rate η ∈ [0, 1/C], P is any distribution over Rp × {±1} such that the
marginal distribution of the features for P and P̃ coincide, and the total variation distance
between the two distributions satisfies dTV(P̃,P) ≤ η. Equivalently, P has the same marginal
distribution over x as P̃, but a sample (x, y) ∼ P has label equal to ỹ with probability 1−η(x)
and has label equal to −ỹ with probability η(x), where η(x) ∈ [0, 1] satisfies Ex∼P [η(x)] ≤
η.

We note that the above assumptions coincide with those used by Chatterji and Long (2021a) in
the linear setting with the exception of the introduction of an assumption of λ strong log-concavity
that we introduce. This assumption is needed so that we may employ a concentration inequality
for Lipschitz functions for strongly log-concave distributions. We note that variations of this data
model have also been studied recently (Wang and Thrampoulidis, 2021; Liang and Recht, 2021;
Wang et al., 2021c).

One example of a cluster distribution which satisfies the above assumptions is the (possibly
anisotropic) Gaussian.

Example 1 If Pclust = N(0,Σ), where ∥Σ∥2 ≤ 1 and ∥Σ−1∥ ≤ 1/κ, and each of the labels are
flipped independently with probability η, then all the properties listed above are satisfied.

1. That is, z ∼ Pclust has a probability density function pz satisfying pz(x) = exp(−U(x)) for some convex function
U : Rp → R such that ∇2U(x)− λIp is positive semidefinite.
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Next, we introduce the neural network architecture and the optimization algorithm. We consider
one-hidden-layer neural networks of width m that take the form

f(x;W ) :=

m∑
j=1

ajϕ(⟨wj , x⟩),

where we denote the input x ∈ Rp and emphasize that the network is parameterized by a matrix
W ∈ Rm×p corresponding to the first layer weights {wj}mj=1. The network’s second layer weights

{aj}mj=1 are initialized aj
i.i.d.∼ Unif({1/

√
m,−1/

√
m}) and fixed at their initial values. We assume

the activation function ϕ satisfies ϕ(0) = 0 and is strictly increasing, 1-Lipschitz, and H-smooth,
that is, it is twice differentiable almost everywhere and there exist γ,H > 0 such that

0 < γ ≤ ϕ′(z) ≤ 1, and |ϕ′′(z)| ≤ H, ∀z ∈ R.

An example of such a function is a smoothed leaky ReLU activation,

ϕSLReLU(z) =


z − 1−γ

4H , z ≥ 1/H,
1−γ
4 Hz2 + 1+γ

2 z, |z| ≤ 1/H,

γz − 1−γ
4H , z ≤ −1/H.

(1)

As H → ∞, ϕSLReLU approximates the leaky ReLU activation z 7→ max(γz, z). We shall refer to
functions ϕ satisfying the above properties as γ-leaky, H-smooth activations.

We assume access to a set of samples S = {(xi, yi)}ni=1
i.i.d.∼ Pn. We denote by C ⊂ [n] the set

of indices corresponding to samples with clean labels, and N as the set of indices corresponding to
noisy labels, so that i ∈ N implies (xi, yi) ∼ P is such that yi = −ỹi using the notation above.

Let ℓ(z) = log(1+exp(−z)) be the logistic loss, and denote the empirical and population risks
under ℓ by

L̂(W ) :=
1

n

n∑
i=1

ℓ(yif(xi;W )) and L(W ) := E(x,y)∼P [ℓ(yf(x;W ))] .

We will also find it useful to treat the function −ℓ′(z) = 1/(1 + exp(z)) as a loss itself: since ℓ is
convex and decreasing, −ℓ′ is non-negative and decreasing and thus can serve as a surrogate for the
0-1 loss. This trick has been used in a number of recent works on neural network optimization (Cao
and Gu, 2020; Frei et al., 2019; Ji and Telgarsky, 2020; Frei et al., 2021). To this end, we introduce
the notation,

g(z) := −ℓ′(z) and Ĝ(W ) :=
1

n

n∑
i=1

g(yif(xi;W )).

We also introduce notation to refer to the function output and the surrogate loss g evaluated at
samples for a given time point,

f
(t)
i := f(xi;W

(t)) and g
(t)
i := g

(
yif

(t)
i

)
.

We initialize the first layer weights independently for each neuron according to standard normals
[W (0)]i,j

i.i.d.∼ N(0, ω2
init), where ω2

init is the initialization variance. The optimization algorithm we
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consider is unregularized full-batch gradient descent on L̂(W ) initialized at W (0) with fixed step-
size α > 0 which has updates

W (t+1) = W (t) − α∇L̂(W (t)).

Given a failure probability δ ∈ (0, 1/2), we make the following assumptions on the parameters
in the paper going forward:

(A1) Number of samples n ≥ C log(1/δ).

(A2) Dimension p ≥ Cmax{n∥µ∥2, n2 log(n/δ)}.

(A3) Norm of the mean satisfies ∥µ∥2 ≥ C log(n/δ).

(A4) Noise rate η ≤ 1/C.

(A5) Step-size α ≤
(
Cmax

{
1, H√

m

}
p2
)−1

, where ϕ is H-smooth.

(A6) Initialization variance satisfies ωinit
√
mp ≤ α.

Assumptions (A1), (A2), and (A3) above have previously appeared in Chatterji and Long (2021a)
and put a constraint on how the number of samples, dimension, and cluster mean separation can re-
late to one another. One regime captured by these assumptions is when the mean separation satisfies
∥µ∥ = Θ(pβ), where β ∈ (0, 1/2) and p ≥ Cmax{n

1
1−2β , n2 log(n/δ)}. Assumption (A6) en-

sures that the first step of gradient descent dominates the behavior of the neural network relative to
that at initialization; this will be key to showing that the network traverses far from initialization
after a single step, which we show in Proposition 2. We note that our analysis holds for neural
networks of arbitrary width m ≥ 1.

3. Main Result

Our main result is that when a neural network is trained on samples from the distribution P described
in the previous section, it will exhibit benign overfitting: the network achieves arbitrarily small
logistic loss, and hence interpolates the noisy training data, and simultaneously achieves test error
close to the noise rate.

Theorem 1 For any γ-leaky, H-smooth activation ϕ, and for all κ ∈ (0, 1), λ > 0, there is a
C > 1 such that provided Assumptions (A1) through (A6) are satisfied, the following holds. For
any 0 < ε < 1/2n, by running gradient descent for T ≥ CL̂(W (0))/

(
∥µ∥2αε2

)
iterations, with

probability at least 1−2δ over the random initialization and the draws of the samples, the following
holds:

1. All training points are classified correctly and the training loss satisfies L̂(W (T )) ≤ ε.

2. The test error satisfies

P(x,y)∼P

[
y ̸= sgn(f(x;W (T )))

]
≤ η + 2 exp

(
−n∥µ∥4

Cp

)
.
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Theorem 1 shows that neural networks trained by gradient descent will exhibit benign overfit-
ting: the logistic loss can be driven to zero so that the network interpolates the noisy training data,
and the trained network will generalize with classification error close to the noise rate η provided
n∥µ∥4 ≫ p. Note that when Pclust = N(0, I), Giraud and Verzelen (2019, Appendix B) showed
that in the noiseless case (η = 0), the minimax test error is at least c exp(−c′min(∥µ∥2, n∥µ∥4/p))
for some absolute constants c, c′ > 0. In the setting of random classification noise, where labels
are flipped with probability η (i.e., η(x) = η for all x), this implies that the minimax test error is
at least η + c exp(−c′min(∥µ∥2, n∥µ∥4/p)). By Assumption (A3), ∥µ∥2 > n∥µ∥4/p, so that the
test error in Theorem 1 is minimax optimal up to constants in the exponent in the setting of random
classification noise.

We briefly also compare our results to margin bounds in the literature. Note that even if one
could prove that the training data is likely to be separated by a large margin, the bound of Theorem 1
approaches the noise rate faster than the standard margin bounds (Vapnik, 1999; Shawe-Taylor et al.,
1998).

We note that our results do not require many of the assumptions typical in theoretical analyses of
neural networks: we allow for networks of arbitrary width; we permit arbitrarily small initialization
variance; and we allow for the network to be trained for arbitrarily long. In particular, we wish to
emphasize that the optimization and generalization analysis used to prove Theorem 1 does not rely
upon the neural tangent kernel approximation. One way to see this is that our results cover finite-
width networks and require ∥W (t)∥ → ∞ as ε → 0 since the logistic loss is never zero. In fact, for
the choice of step-size and initialization variance given in Assumptions (A5) and (A6), the weights
travel far from their initial values after a single step of gradient descent, as we show in Proposition 2
below.

Proposition 2 Under the settings of Theorem 1, we have for some absolute constant C > 1 with
probability at least 1− 2δ over the random initialization and the draws of the samples,

∥W (1) −W (0)∥F
∥W (0)∥F

≥ γ∥µ∥
C

.

The proof for Proposition 2 is provided in Appendix B.

4. Proof of Theorem 1

In this section we will assume that Assumptions (A1) through (A6) are in force for a large constant
C > 1.

Theorem 1 consists of two claims: the first is that the test error of the trained neural network is
close to the noise rate when n∥µ∥4/p ≫ 1, and the second is that the empirical loss can simulta-
neously be made arbitrarily small despite the presence of noisy labels. Both of these claims will be
established via a series of lemmas. All of these lemmas are proved in Appendix A.

The first claim will follow by establishing a lower bound for the expected normalized margin on
clean points, E(x,ỹ)∼P̃[ỹf(x;W

(t))/∥W (t)∥F ]. We do so in the following lemma which leverages
the fact that Pclust is λ-strongly log-concave.
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Lemma 3 Suppose that E(x,ỹ)∼P̃[ỹf(x;W )] ≥ 0. Then there exists a universal constant c > 0
such that

P(x,y)∼P

(
y ̸= sgn(f(x;W ))

)
≤ η + 2 exp

−cλ

(
E(x,ỹ)∼P̃[ỹf(x;W )]

∥W∥F

)2
 .

Lemma 3 demonstrates that the generalization bound will follow by showing a lower bound on
the normalized margin of the neural network on clean samples at a given time. To derive such a
result, we first need to introduce a number of structural results about the samples and the neural
network objective function. The first such result concerns the norm of the weights at initialization.

Lemma 4 There is a universal constant C0 > 1 such that with probability at least 1 − δ over the
random initialization,

∥W (0)∥2F ≤ 3

2
ω2
initmp and ∥W (0)∥2 ≤ C0ωinit(

√
m+

√
p).

Our next structural result characterizes some properties of random samples from the distribution.
It was proved in Chatterji and Long (2021a, Lemma 10) and is a consequence of Assumptions (A1)
through (A4).

Lemma 5 For all κ > 0, there is C1 > 1 such that for all c′ > 0, for all large enough C, with
probability at least 1− δ over Pn, the following hold:

E.1 For all k ∈ [n],

p/C1 ≤ ∥xk∥2 ≤ C1p.

E.2 For all i ̸= j ∈ [n],

|⟨xi, xj⟩| ≤ C1(∥µ∥2 +
√

p log(n/δ)).

E.3 For all k ∈ C,

|⟨µ, ykxk⟩ − ∥µ∥2| ≤ ∥µ∥2/2.

E.4 For all k ∈ N ,

|⟨µ, ykxk⟩ − (−∥µ∥2)| ≤ ∥µ∥2/2.

E.5 The number of noisy samples satisfies |N |/n ≤ η + c′.

Definition 6 If the events in Lemma 4 and Lemma 5 occur, let us say that we have a good run.

Lemmas 4 and 5 show that a good run occurs with probability at least 1− 2δ. In what follows,
we will assume that a good run occurs.

We next introduce a number of structural lemmas concerning the neural network optimization
objective. The first concerns the smoothness of the network in terms of the first layer weights.
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Lemma 7 For an H-smooth activation ϕ and any W,V ∈ Rm×p and x ∈ Rp,

|f(x;W )− f(x;V )− ⟨∇f(x;V ),W − V ⟩| ≤ H∥x∥2

2
√
m

∥W − V ∥22.

In the next lemma, we provide a number of smoothness properties of the empirical loss.

Lemma 8 For an H-smooth activation ϕ and any W,V ∈ Rm×p, on a good run it holds that

1√
C1p

∥∇L̂(W )∥F ≤ Ĝ(W ) ≤ L̂(W ) ∧ 1,

where C1 is the constant from Lemma 5. Additionally,

∥∇L̂(W )−∇L̂(V )∥F ≤ C1p

(
1 +

H√
m

)
∥W − V ∥2.

Our final structural result is the following lemma that characterizes the pairwise correlations of
the gradients of the network at different samples.

Lemma 9 Let C1 > 1 be the constant from Lemma 5. For a γ-leaky, H-smooth activation ϕ, on a
good run, we have the following.

(a) For any i, k ∈ [n], i ̸= k, and any W ∈ Rm×d, we have

|⟨∇f(xi;W ),∇f(xk;W )⟩| ≤ C1

(
∥µ∥2 +

√
p log(n/δ)

)
.

(b) For any i ∈ [n] and any W ∈ Rm×d, we have

γ2p

C1
≤ ∥∇f(xi;W )∥2F ≤ C1p.

In the regime where ∥µ∥2 = o(p), Lemma 9 shows that the gradients of the network at different
samples are roughly orthogonal as the pairwise inner products of the gradients are much smaller than
the norms of each gradient. This mimics the behavior of the samples xi established in Lemma 5.

With these structural results in place, we can now begin to prove a lower bound for the normal-
ized margin on test points. To do so, our first step is to characterize the change in the unnormalized
margin y[f(x;W (t+1))−f(x;W (t))] from time t to time t+1 for an independent test sample (x, y).

Lemma 10 Let C1 > 1 be the constant from Lemma 1. For a γ-leaky, H-smooth activation ϕ, on
a good run, we have for any t ≥ 0 and (x, y) ∈ Rp × {±1}, and for each i = 1, . . . , n, there exist
ξi = ξ(W (t), xi, x) ∈ [γ2, 1], such that

y[f(x;W (t+1))− f(x;W (t))] ≥ α

n

n∑
i=1

g
(t)
i

[
ξi⟨yixi, yx⟩ −

HC2
1p

2α

2
√
m

]
,

where g
(t)
i := −ℓ′(yif(xi;W

(t))).
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Consider what Lemma 10 tells us when (x, ỹ) ∼ P̃ is a clean test example. The lemma suggests
that if ⟨yixi, ỹx⟩ is always bounded from below by a strictly positive constant, then the margin on
the test sample (x, ỹ) will increase. Unfortunately, the presence of noisy labels will cause some of
the ⟨yixi, ỹx⟩ terms appearing above to be negative, allowing for the possibility that the unnormal-
ized margin decreases on a test sample (x, ỹ). If the losses g(yif(xi;W

(t))) for (noisy) samples
satisfying ⟨yixi, ỹx⟩ < 0 are particularly large relative to the losses g(yi′f(xi′ ;W

(t))) for (clean)
samples satisfying ⟨yi′xi′ , ỹx⟩ > 0, then indeed Lemma 10 may fail to guarantee an increase in the
unnormalized margin. However, if one could show that the g losses are essentially ‘balanced’ across
all samples, then provided the fraction of noisy labels is not too large, one could ignore the effect of
the noisy labels which contribute negative terms to the sum

∑
i g

(t)
i ⟨yixi, ỹx⟩, and eventually show

that the lower bound given in Lemma 10 is strictly positive. This provides a motivation for our
next lemma, which directly shows that the losses on all samples are relatively balanced throughout
training. This is the key technical lemma for our proof, and extends the results of Chatterji and Long
(2021a) from the logistic regression setting to the two-layer neural network setting.

Lemma 11 For a γ-leaky, H-smooth activation ϕ, there is an absolute constant Cr = 16C2
1/γ

2

such that on a good run, provided C > 1 is sufficiently large, we have for all t ≥ 0,

max
i,j∈[n]

g
(t)
i

g
(t)
j

≤ Cr.

With this loss ratio bound, we first derive an upper bound on the norm of the iterates W (t),
sharper than what we get by applying the triangle inequality along with the bound on the norm
of the gradient of the loss provided by Lemma 8. This will improve our final guarantee for the
normalized margin.

Lemma 12 There is an absolute constant C2 > 1 such that for C > 1 sufficiently large, on a good
run we have that for all t ≥ 0,

∥W (t)∥F ≤ ∥W (0)∥F + C2α

√
p

n

t−1∑
s=0

Ĝ(W (s)).

With the loss ratio bound provided in Lemma 11 and the tightened gradient norm bound of
Lemma 12 established, we can now derive a lower bound on the normalized margin. Note that this
lower bound on the normalized margin in conjunction with Lemma 3 results in the test error bound
for the main theorem.

Lemma 13 For a γ-leaky, H-smooth activation ϕ, and for all C > 1 sufficiently large, on a good
run, for any t ≥ 1,

E(x,ỹ)∼P̃[ỹf(x;W
(t))]

∥W (t)∥F
≥ γ2∥µ∥2

√
n

8max(
√
C1, C2)

√
p
,

where C1 and C2 are the constants from Lemma 5 and Lemma 12, respectively.

Since Lemma 13 provides a positive margin on clean points, we have by Lemma 3 a guarantee
that the neural network achieves classification error on the noisy distribution close to the noise
level. The only remaining part of Theorem 1 that remains to be proved is that the training loss can
be driven to zero. This is a consequence of the following lemma, the proof of which also crucially
relies upon the loss ratio bound of Lemma 11.

10
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Lemma 14 For a γ-leaky, H-smooth activation ϕ, provided C > 1 is sufficiently large, then on a
good run we have for all t ≥ 0,

∥∇L̂(W (t))∥F ≥ γ∥µ∥
4

Ĝ(W (t)).

Moreover, any T ∈ N,

1

n

n∑
i=1

1
(
yi ̸= sgn(f(xi;W

(T−1)))
)
≤ 2Ĝ(W (T−1)) ≤ 2

(
32L̂(W (0))

γ2∥µ∥2αT

)1/2

.

In particular, for T ≥ 128L̂(W (0))/
(
γ2∥µ∥2αε2

)
, we have Ĝ(W (T−1)) ≤ ε/2.

We now have all the results necessary to prove our main theorem.
Proof [Proof of Theorem 1] By Lemma 5 and Lemma 4, a ‘good run’ occurs with probability at
least 1− 2δ. Since a good run occurs, we can apply Lemma 13. Using this as well as Lemma 3, we
have with probability at least 1− 2δ,

P(x,y)∼P

(
y ̸= sgn(f(x;W ))

)
≤ η + 2 exp

−cλ

(
E(x,ỹ)∼P̃[ỹf(x;W )]

∥W∥2

)2


≤ η + 2 exp

(
−cλ

(
γ4n∥µ∥4

82max(C1, C2
2 )p

))
.

By Lemma 14, since T ≥ 32L̂(W (0))/
(
γ∥µ∥αε2

)
, we have

Ĝ(W (T−1)) ≤ ε/2.

Since ε < 1/(2n) and g(z) = −ℓ′(z) < 1/2 if and only if z > 0, we know that yif(xi;W (T−1)) >
0 for every i ∈ [n]. We are working with the logistic loss, and hence we have 1

2ℓ(yif(xi;W
(T−1))) ≤

g(yif(xi;W
(T−1))) for every i ∈ [n], which implies that

L̂(W (T−1)) =
1

n

n∑
i=1

ℓ(yif(xi;W
(T−1))) ≤ 2

n

n∑
i=1

−ℓ′(yif(xi;W
(T−1))) = 2Ĝ(W (T−1)) ≤ ε.

5. Discussion

We have shown that neural networks trained by gradient descent will interpolate noisy training data
and still generalize close to the noise rate when the data comes from a mixture of well-separated
sub-Gaussian distributions and the dimension of the data is larger than the sample size. Our results
mimic those established by Chatterji and Long (2021a) for linear classifiers, but they hold for the
much richer class of two-layer neural networks.

Our proof technique relies heavily upon the assumption that the number of samples is much
less than the ambient dimension. This assumption allows for every pair of distinct samples to

11
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be roughly mutually orthogonal so that samples with noisy labels cannot have an outsized effect
on the ability for the network to learn a positive margin on clean examples. Previous work has
established a similar ‘blessing of dimensionality’ phenomenon: Belkin et al. (2018) showed that the
gap between a particular simplicial interpolation rule and the Bayes error decreases exponentially
fast as the ambient dimension increases, mimicking the behavior we show in Theorem 1. In the
linear regression setting, it is known that for the minimum norm solution to generalize well it is
necessary for the dimension of the data p to be much larger than n (Bartlett et al., 2020). It has
also been shown that if the ambient dimension is one, local interpolation rules necessarily have
suboptimal performance (Ji et al., 2021). Taken together, these results suggest that working in high
dimensions makes it easier for benign overfitting to hold, but it is an interesting open question to
understand the extent to which working in the p ≥ n regime is necessary for benign overfitting
with neural networks. In particular, when can benign overfitting occur in neural networks that have
enough parameters to fit the training points (mp > n) but for which the number of samples is larger
than the input dimension (n > p)?

In this work we considered a data distribution for which the optimal classifier is linear but
analyzed a model and algorithm that are fundamentally nonlinear. A natural next step is to develop
characterizations of benign overfitting for neural networks trained by gradient descent in settings
where the optimal classifier is nonlinear. We believe some of the insights developed in this work
may be useful in these settings: in particular, it appears that in the p ≫ n setting, the optimization
dynamics of gradient descent can become simpler as can be seen by the ‘loss ratio bound’ provided
in Lemma 11. On the other hand, we believe the generalization analysis will become significantly
more difficult when the optimal classifier is nonlinear.
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Appendix A. Omitted Proofs from Section 4

In this section we provide a proof of all of the lemmas presented in Section 4. We remind the reader
that throughout this section, we assume that Assumptions (A1) through (A6) are in force.

First in Section A.1 we prove the concentration results, Lemmas 3 and 4. Next, in Section A.2
we prove the structural results, Lemmas 7, 8 and 9. In Section A.3 we prove Lemma 10 that demon-
strates that the margin on a test point increases with training. In Section A.4 we prove Lemma 11
that guarantees that the ratio of the surrogate losses remains bounded throughout training, while in
Section A.5 we prove Lemma 12 that bounds the growth of the norm of the parameters. Next, in
Section A.6 we prove Lemma 13 that provides a lower bound on the normalized margin on a test
point. Finally, in Section A.7, we prove Lemma 14 that is useful in proving that the training error
and loss converge to zero.

A.1. Concentration Inequalities

In this subsection we prove the concentration results Lemmas 3 and 4.
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A.1.1. PROOF OF LEMMA 3

Let us restate Lemma 3.

Lemma 15 Suppose that E(x,ỹ)∼P̃[ỹf(x;W )] ≥ 0. Then there exists a universal constant c > 0
such that

P(x,y)∼P

(
y ̸= sgn(f(x;W ))

)
≤ η + 2 exp

−cλ

(
E(x,ỹ)∼P̃[ỹf(x;W )]

∥W∥F

)2
 .

Proof Following the proof of Chatterji and Long (2021a, Lemma 9), we have

P(x,y)∼P(y ̸= sgn(f(x;W )) = P(x,y)∼P(y sgn(f(x;W )) < 0)

≤ η + P(x,ỹ)∼P̃(ỹf(x;W ) < 0).

It therefore suffices to provide an upper bound for P(x,ỹ)∼P̃(ỹf(x;W ) < 0). Towards this end, we
first note that f is a ∥W∥2-Lipschitz function of the input x: let x, x′ ∈ Rp, and consider

|f(x;W )− f(x′;W )| =

∣∣∣∣∣∣
m∑
j=1

aj [ϕ(⟨wj , x⟩)− ϕ(⟨wj , x
′⟩)]

∣∣∣∣∣∣
(i)

≤
m∑
j=1

|aj ||⟨wj , x− x′⟩|

(ii)

≤

√√√√ m∑
j=1

a2j

√√√√ m∑
j=1

⟨wj , x− x′⟩2

= ∥W (x− x′)∥
(iii)

≤ ∥W∥2∥x− x′∥.

Above, (i) uses that ϕ is 1-Lipschitz, and (ii) follows by the Cauchy–Schwarz inequality. Inequality
(iii) is by the definition of the spectral norm. This shows that f(·;W ) is ∥W∥2-Lipschitz.

Since Pclust is λ-strongly log-concave, by Ledoux (2001, Theorem 2.7 and Proposition 1.10),
since ỹf(x;W ) is ∥W∥2-Lipschitz, there is an absolute constant c > 0 such that for any q ≥
1, ∥ỹf(x;W ) − E[ỹf(x;W )]∥Lq ≤ c∥W∥2

√
q/λ. This behavior of the growth of Lq norms is

equivalent to ỹf(x;W )− E[ỹf(x;W )] having sub-Gaussian norm c′∥W∥2/
√
λ for some absolute

constant c′ > 0, by Vershynin (2010, Proposition 2.5.2). Thus, there is an absolute constant c′′ > 0
such that for any t ≥ 0,

P(|ỹf(x;W )− E[ỹf(x;W )]| ≥ t) ≤ 2 exp

(
−c′′λ

(
t

∥W∥2

)2
)
. (2)

Since we have the equality,

P
(
ỹ ̸= sgn(f(x;W ))

)
= P(ỹf(x;W )− E[ỹf(x;W )] < −E[ỹf(x;W )])

the result follows by taking t = E[ỹf(x;W )] ≥ 0 in (2) and using ∥W∥2 ≤ ∥W∥F .
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A.1.2. PROOF OF LEMMA 4

Now let us restate and prove Lemma 4.

Lemma 16 There is a universal constant C0 > 1 such that with probability at least 1− δ over the
random initialization,

∥W (0)∥2F ≤ 3

2
ω2
initmp and ∥W (0)∥2 ≤ C0ωinit(

√
m+

√
p).

Proof Note that ∥W (0)∥2F is a ω2
init-multiple of a chi-squared random variable with mp degrees

of freedom. By concentration of the χ2 distribution (Wainwright, 2019, Example 2.11), for any
t ∈ (0, 1),

P
(∣∣∣∣ 1

mpω2
init

∥W (0)∥2F − 1

∣∣∣∣ ≥ t

)
≤ 2 exp(−mpt2/8).

In particular, if we choose t =
√

8 log(4/δ)/md and use Assumption (A2), we get that t ≤ 1/2
and so with probability at least 1− δ/2, we have

∥W (0)∥2F ≤ 3

2
mpω2

init.

As for the spectral norm, since the entries of W (0)/ωinit are i.i.d. standard normal random variables,
by Vershynin (2010, Theorem 4.4.5) there exists a universal constant c > 0 such that for any u ≥ 0,
with probability at least 1− 2 exp(−u2), we have

∥W (0)∥2 ≤ cωinit(
√
m+

√
p+ u).

In particular, taking u =
√

log(4/δ) we have with probability at least 1 − δ/2, ∥W (0)∥2 ≤
cωinit(

√
m +

√
p +

√
log(4/δ). Since

√
p ≥

√
log(4/δ) by Assumption (A2), the proof is com-

pleted by a union bound over the claims on the spectral norm and the Frobenius norm.

A.2. Structural Results

As stated above in this section we prove Lemmas 7, 8 and 9.

A.2.1. PROOF OF LEMMA 7

We begin by restating and proving Lemma 7.

Lemma 17 For an H-smooth activation ϕ and any W,V ∈ Rm×p and x ∈ Rp,

|f(x;W )− f(x;V )− ⟨∇f(x;V ),W − V ⟩| ≤ H∥x∥2

2
√
m

∥W − V ∥22.

Proof Since ϕ is twice differentiable, ϕ′ is continuous and so by Taylor’s theorem, for each j ∈ [m],
there exist constants tj = tj(wj , vj , x) ∈ R,

ϕ(⟨wj , x⟩)− ϕ(⟨vj , x⟩) = ϕ′(⟨vj , x⟩) · ⟨wj − vj , x⟩+
ϕ′′(tj)

2
(⟨wj − vj , x⟩)2,
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where tj lies between ⟨wj , x⟩ and ⟨vj , x⟩. We therefore have

f(x;W )− f(x;V ) =

m∑
j=1

aj [ϕ(⟨wj , x⟩)− ϕ(⟨vj , x⟩)]

=

m∑
j=1

aj

[
ϕ′(⟨vj , x⟩) · ⟨wj − vj , x⟩+

ϕ′′(tj)

2
⟨wj − vj , x⟩2

]

= ⟨∇f(x;V ),W − V ⟩+
m∑
j=1

aj
ϕ′′(tj)

2
⟨wj − vj , x⟩2.

The last equality follows since we can write

∇f(x;V ) = DV
x ax

⊤, where DV
x := diag(ϕ′(⟨vj , x⟩)), (3)

and thus

⟨∇f(x;V ),W −V ⟩ = tr(xa⊤DV
x (W −V )) = a⊤DV

x (W −V )x =
∑
j

ajϕ
′(⟨vj , x⟩)⟨wj−vj , x⟩.

For the final term, we have∣∣∣∣∣∣
m∑
j=1

aj
ϕ′′(ξj)

2
⟨wj − vj , x⟩2

∣∣∣∣∣∣ ≤
m∑
j=1

|aj |
|ϕ′′(tj)|

2
⟨wj − vj , x⟩2

≤ H

2
√
m

m∑
j=1

⟨wj − vj , x⟩2

=
H

2
√
m

∥(W − V )x∥22

≤ H

2
√
m

∥W − V ∥22 ∥x∥
2
2.

A.2.2. PROOF OF LEMMA 8

Next we prove Lemma 8 that establishes that the loss is smooth.

Lemma 18 For an H-smooth activation ϕ and any W,V ∈ Rm×p, on a good run it holds that

1√
C1p

∥∇L̂(W )∥F ≤ Ĝ(W ) ≤ L̂(W ) ∧ 1,

where C1 is the constant from Lemma 5. Additionally,

∥∇L̂(W )−∇L̂(V )∥F ≤ C1p

(
1 +

H√
m

)
∥W − V ∥2.
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Proof Since a good run occurs, all the events in Lemma 5 hold. We thus have

∥∥∥∇L̂(W )
∥∥∥
F
=

∥∥∥∥∥ 1n
n∑

i=1

g(yif(xi;W ))yi∇f(xi;W )

∥∥∥∥∥
F

(i)

≤ 1

n

n∑
i=1

g(yif(xi;W )) ∥∇f(xi;W )∥F

(ii)

≤
√
C1p

n

n∑
i=1

g(yif(xi;W )) =
√
C1pĜ(W )

(iii)

≤
√
C1p

n

n∑
i=1

min(ℓ(yif(xi;W )), 1)

(iv)

≤
√
C1p(L̂(W ) ∧ 1).

In (i) we have used Jensen’s inequality. In (ii) we have used that ϕ is 1-Lipschitz so that ∥∇f(xi;W )∥2F =∥∥DW
i ax⊤i

∥∥2
F

=
∥∥DW

i a
∥∥2
2
∥xi∥22 ≤ C1p by Event (E.1), where DW

i = DW
xi

is defined in Equa-
tion (3). In (iii) we use that 0 ≤ g(z) ≤ 1 ∧ ℓ(z). In (iv) we use Jensen’s inequality since
z 7→ min {z, 1} is a concave function.

Next we show that the loss has Lipschitz gradients. First, we have the decomposition

∥∇L̂(W )−∇L̂(V )∥F =

∥∥∥∥∥ 1n
n∑

i=1

[g(yif(xi;W ))yi∇f(xi;W )− g(yif(xi;V ))yi∇f(xi;V )]

∥∥∥∥∥
F

≤ 1

n

n∑
i=1

∥∇f(xi;W )∥F |g(yif(xi;W ))− g(yif(xi;V ))|

+
1

n

n∑
i=1

∥∇f(xi;W )−∇f(xi;V )∥F

(i)

≤ 1

n

n∑
i=1

∥∇f(xi;W )∥F |f(xi;W )− f(xi;V )|

+
1

n

n∑
i=1

∥∇f(xi;W )−∇f(xi;V )∥F . (4)

In (i), we use that g = −ℓ′ (the negative derivative of the logistic loss) is 1-Lipschitz. Therefore, to
show that the loss has Lipschitz gradients, it suffices to show that both the network and the gradient
of the network are Lipschitz with respect to the first layer weights. We first show that the network
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is Lipschitz with respect to the network parameters:

|f(x;W )− f(x;V )|2 =

∣∣∣∣∣∣
m∑
j=1

aj [ϕ(⟨wj , x⟩)− ϕ(⟨vj , x⟩)]

∣∣∣∣∣∣
2

≤

 m∑
j=1

a2j

 ·
m∑
j=1

|ϕ(⟨wj , x⟩)− ϕ(⟨vj , x⟩)|2

≤
m∑
j=1

|⟨wj , x⟩ − ⟨uj , x⟩|2

= ∥(W − V )x∥2

≤ ∥x∥2∥W − V ∥22. (5)

As for the gradients of the network, again recalling the DW
x notation from Equation (3), we have

∥∇f(x;W )−∇f(x;V )∥2F = ∥(DW
x −DV

x )ax
T ∥2

≤ ∥x∥2∥(DW
x −DV

x )a∥2

= ∥x∥2
m∑
j=1

a2j [ϕ
′(⟨wj , x⟩)− ϕ′(⟨vj , x⟩)]2

≤ ∥x∥2 · H
2

m

m∑
j=1

|⟨wj , x⟩ − ⟨vj , x⟩|2

= H2∥x∥2 · 1

m
∥(W − V )x∥2

≤ H2

m
∥x∥4∥W − V ∥22. (6)

Continuing from (4), we have

∥∇L̂(W )−∇L̂(V )∥F ≤ 1

n

n∑
i=1

∥∇f(xi;W )∥F |f(xi;W )− f(xi;V )|

+
1

n

n∑
i=1

∥∇f(xi;W )−∇f(xi;V )∥F

(i)

≤
√
C1p ·

1

n

n∑
i=1

|f(xi;W )− f(xi;V )|+ C1Hp√
m

∥W − V ∥2

(ii)

≤ C1p

(
1 +

H√
m

)
∥W − V ∥2. (7)

In (i) we use that ϕ being 1-Lipschitz implies ∥∇f(xi;W )∥F = ∥xi∥∥DW
i a∥ ≤

√
C1p for the first

term, and (6) together with (E.1). In (ii), we use (5) and (E.1).
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A.2.3. PROOF OF LEMMA 9

Finally, we prove Lemma 9 that bounds the correlation between the gradients.

Lemma 19 Let C1 > 1 be the constant from Lemma 5. For a γ-leaky, H-smooth activation ϕ, on a
good run, we have the following.

(a) For any i, k ∈ [n], i ̸= k, and any W ∈ Rm×d, we have

|⟨∇f(xi;W ),∇f(xk;W )⟩| ≤ C1

(
∥µ∥2 +

√
p log(n/δ)

)
.

(b) For any i ∈ [n] and any W ∈ Rm×d, we have

γ2p

C1
≤ ∥∇f(xi;W )∥2F ≤ C1p.

Proof Recall the notation DW
i := diag(ϕ′(⟨wj , xi⟩) ∈ Rm×m. By definition,

⟨∇f(xi;W ),∇f(xk;W )⟩ = tr(xia
⊤DW

i DW
k ax⊤k )

= tr
(
x⊤i xka

⊤DW
i DW

k a
)

= ⟨xi, xk⟩a⊤DW
i DW

k a

= ⟨xi, xk⟩
m∑
j=1

a2jϕ
′(⟨wj , xi⟩)ϕ′(⟨wj , xk⟩)

= ⟨xi, xk⟩ ·
1

m

m∑
j=1

ϕ′(⟨wj , xi⟩)ϕ′(⟨wj , xk⟩). (8)

Since a good run occurs, all the events in Lemma 5 hold. We can therefore bound,

|⟨∇f(xi;W ),∇f(xk;W )⟩|
(i)

≤ |⟨xi, xk⟩|
(ii)

≤ C1

(
∥µ∥2 +

√
p log(n/δ)

)
.

Inequality (i) uses that |ϕ′(z)| ≤ 1, while inequality (ii) uses Event (E.2) from Lemma 5. This
completes the proof for part (a). For part (b), we continue from (8) to get

∥∇f(xi;W )∥2F = ∥xi∥2 ·
1

m

m∑
j=1

ϕ′(⟨wj , xi⟩)2.

By the assumption on ϕ, we know ϕ′(z) ≥ γ > 0 for every t ∈ R. Now we can use Lemma 5,
which states that p/C1 ≤ ∥xi∥2 ≤ C1p for all i. In particular, we have

p

C1
· γ2 ≤ ∥xi∥2 ·

1

m

m∑
j=1

ϕ′(⟨wj , xi⟩)2 = ∥∇f(xi;W )∥2F ≤ C1p.
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A.3. Proof of Lemma 10

Let us restate and prove the lemma. Recall that (x, y) are independent test samples.

Lemma 20 Let C1 > 1 be the constant from Lemma 1. For a γ-leaky, H-smooth activation ϕ, on
a good run, we have for any t ≥ 0 and (x, y) ∈ Rp × {±1}, and for each i = 1, . . . , n, there exist
ξi = ξ(W (t), xi, x) ∈ [γ2, 1], such that

y[f(x;W (t+1))− f(x;W (t))] ≥ α

n

n∑
i=1

g
(t)
i

[
ξi⟨yixi, yx⟩ −

HC2
1p

2α

2
√
m

]
,

where g
(t)
i := −ℓ′(yif(xi;W

(t))).

Proof First, note that since a good run occurs, Lemma 7 implies∣∣∣f(x;W (t+1))− f(x;W (t))− ⟨∇f(x;W (t)),W (t+1) −W (t)⟩
∣∣∣ ≤ HC1p

2
√
m

∥∥∥W (t+1) −W (t)
∥∥∥2
2
.

In particular, we have for y ∈ {±1},

y[f(x;W (t+1))−f(x;W (t))] ≥ y
[
⟨∇f(x;W (t)),W (t+1) −W (t)⟩

]
−HC1p

2
√
m

∥∥∥W (t+1) −W (t)
∥∥∥2
2
.

(9)
We can therefore calculate

y[f(x;W (t+1))− f(x;W (t))]
(i)

≥ y
[
⟨∇f(x;W (t)),W (t+1) −W (t)⟩

]
− HC1p

2
√
m

∥∥∥W (t+1) −W (t)
∥∥∥2
2

= y

[
α

n

n∑
i=1

g
(t)
i ⟨yi∇f(x;W (t)),∇f(xi;W

(t))⟩

]

− HC1pα
2

2
√
m

∥∥∥∇L̂(W (t))
∥∥∥2
2

(ii)

≥

[
α

n

n∑
i=1

g
(t)
i ⟨y∇f(x;W (t)), yi∇f(xi;W

(t))⟩

]

− HC2
1p

2α2

2
√
m

Ĝ(W (t))

= α

[
1

n

n∑
i=1

g
(t)
i ξi⟨yixi, yx⟩ −

HC2
1p

2α

2
√
m

Ĝ(W (t))

]
.

The inequality (i) follows by (9), while (ii) uses Lemma 8. The last equality follows by defining

ξi = ξ(W (t), x, xi) :=
1

m

m∑
j=1

ϕ′(⟨w(t)
j , xi⟩) · ϕ′(⟨w(t)

j , x⟩),

and re-using the identity (8) and using the fact that ϕ′(z) ∈ [γ, 1] for all z ∈ R. The result follows
by recalling the definition Ĝ(W (t)) = 1

n

∑n
i=1 g

(t)
i .
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A.4. Proof of Lemma 11

Let us first restate the lemma.

Lemma 21 For a γ-leaky, H-smooth activation ϕ, there is an absolute constant Cr = 16C2
1/γ

2

such that on a good run, provided C > 1 is sufficiently large, we have for all t ≥ 0,

max
i,j∈[n]

g
(t)
i

g
(t)
j

≤ Cr.

Before proceeding with the proof of Lemma 11, we introduce the following fact which will be
used in our proof.

Fact 22 For any z1, z2 ∈ R,

g(z1)

g(z2)
≤ max

(
2, 2

exp(−z1)

exp(−z2)

)
.

Proof By definition, g(z) = 1/(1 + exp(z)). Note that g is strictly decreasing, non-negative, and
bounded from above by one. Further, one has the inequalities

1

2
exp(−z) ≤ g(z) ≤ exp(−z) ∀z ≥ 0.

We do a case-by-case analysis on the signs of the zi.

• If z1 ≤ 0 and z2 ≤ 0, then since g(z1) ≤ 1 and g(z2) ≥ 1/2, it holds that g(z1)/g(z2) ≤ 2.

• If z1, z2 ≥ 0, then since g(z1) ≤ exp(−z1) and g(z2) ≥ 1/2 exp(−z2), we have g(z1)/g(z2) ≤
2 exp(−z1)/ exp(−z2).

• If z1 ≥ 0 and z2 ≤ 0, then g(z1)/g(z2) ≤ 2.

• If z1 ≤ 0 and z2 ≥ 0, then g(z1)/g(z2) ≤ 2/ exp(−z2) ≤ 2 exp(−z1)/ exp(−z2).

This proves the upper bound of g(z1)/g(z2).

We now proceed with the proof of the loss ratio bound.
Proof [Proof of Lemma 11] In order to show that the ratio of the g(·) losses is bounded, it suffices
to show that the ratio of exponential losses exp(−(·)) is bounded, since by Fact 22,

max
i,j=1,...,n

g(yif(xi;W
(t)))

g(yjf(xj ;W (t)))
≤ max

(
2, 2 · max

i,j=1,...,n

exp(−yif(xi;W
(t)))

exp(−yjf(xj ;W (t)))

)
. (10)

Thus in the remainder of the proof we will show that the ratio of the exponential losses is
bounded by an absolute constant. To see the claim at iteration 0, since ϕ is 1-Lipschitz and ϕ(0) = 0,
we have by Cauchy–Schwarz,

|f(x;W )| =

∣∣∣∣∣∣
m∑
j=1

ajϕ(⟨wj , x⟩)

∣∣∣∣∣∣ ≤
√√√√ m∑

j=1

a2j

√√√√ m∑
j=1

⟨wj , x⟩2 = ∥Wx∥2.
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Since a good run occurs, all the events in Lemma 5 and Lemma 4 hold. In particular, we have
∥W (0)∥2 ≤ C0ωinit(

√
m+

√
p) and ∥xi∥ ≤

√
C1p for all i ∈ [n]. We therefore have the bound,

2C0ωinit

√
C1p(

√
m+

√
p)

(i)

≤
2C0

√
C1α

√
p(
√
m+

√
p)

√
mp

(ii)

≤ 2C0

√
C1

Cp2

(
1 +

√
p

m

)
(iii)

≤ 1,

where inequality (i) uses Assumption (A6), inequality (ii) uses Assumption (A5), and the final
inequality (iii) follows by taking C > 1 large enough. We thus have for all i ∈ [n],

|f(xi;W (0))| ≤ ∥W (0)∥2∥xi∥ ≤ 2C0ωinit

√
C1p(

√
m+

√
p) ≤ 1. (11)

Thus,

max
i,j=1,...,n

exp(−yif(xi;W
(0)))

exp(−yjf(xj ;W (0)))
≤ exp(2). (12)

We now claim by induction that for all t ≥ 0,

max
i,j=1,...,n

exp(−yif(xi;W
(t)))

exp(−yjf(xj ;W (t))
≤ 8C2

1

γ2
.

The base case t = 0 holds by (12) and since C1 > 1. Assume now the result holds at time t and
consider the case t+1. Without loss of generality, it suffices to prove that the ratio of the exponential
loss for the first sample to the exponential loss for the second sample is bounded by 8C2

1/γ
2. To

this end, let us denote

At :=
exp(−y1f(x1;W

(t)))

exp(−y2f(x2;W (t)))
.

Since the induction hypothesis holds at time t, At is at most 8C2
1/γ

2. We want to show At+1 ≤
8C2

1/γ
2. To do so, we calculate the exponential loss ratio between two samples at time t + 1 in

terms of the exponential loss ratio at time t. Recalling the notation g
(t)
i := g(yif(xi;W

(t))), we
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can calculate,

At+1 =
exp(−y1f(x1;W

(t+1)))

exp(−y2f(x2;W (t+1)))

=
exp

(
−y1f1

(
W (t) − α∇L̂(W (t))

))
exp

(
−y2f2

(
W (t) − α∇L̂(W (t))

))
(i)

≤
exp

(
−y1f

(
x1;W

(t)
)
+ y1α

〈
∇f(x1;W

(t)),∇L̂(W (t))
〉)

exp
(
−y2f

(
x2;W (t)

)
+ y2α

〈
∇f(x2;W (t)),∇L̂(W (t))

〉) exp

(
HC1pα

2

√
m

∥∇L̂(W (t))∥2
)

(ii)
= At ·

exp
(
y1α

〈
∇f(x1;W

(t)),∇L̂(W (t))
〉)

exp
(
y2α

〈
∇f(x2;W (t)),∇L̂(W (t))

〉) exp

(
HC1pα

2

√
m

∥∇L̂(W (t))∥2
)

= At ·
exp

(
−α

n

∑n
k=1 y1ykg

(t)
k ⟨∇f(x1;W

(t)),∇f(xk;W
(t))⟩

)
exp

(
−α

n

∑n
k=1 y2ykg

(t)
k ⟨∇f(x2;W (t)),∇f(xk;W (t))⟩

) exp

(
HC1pα

2

√
m

∥∇L̂(W (t))∥2
)

= At · exp
(
−α

n

(
g
(t)
1 ∥∇f(x1;W

(t))∥2F − g
(t)
2 ∥∇f(x2;W

(t))∥2F
))

×
exp

(
−α

n

∑
k>1 y1ykg

(t)
k ⟨∇f(x1;W

(t)),∇f(xk;W
(t))⟩

)
exp

(
−α

n

∑
k ̸=2 y2ykg

(t)
k ⟨∇f(x2;W (t)),∇f(xk;W (t))⟩⟩

)
× exp

(
HC1pα

2

√
m

∥∇L̂(W (t))∥2
)
. (13)

Inequality (i) uses Lemma 7 and Event (E.1) which ensures that ∥xi∥2 ≤ C1p, and (ii) uses that
At is the ratio of the exponential losses. We now proceed to bound each of the three terms in the
product separately. For the first term, by Part (b) of Lemma 9, we have for any i ∈ [n],

γ2p

C1
≤ ∥∇f(xi;W

(t))∥2F ≤ C1p. (14)

Therefore, we have

exp
(
−α

n

(
g
(t)
1 ∥∇f(x1;W

(t))∥2F − g
(t)
2 ∥∇f(x2;W

(t))∥2F
))

= exp

(
−g

(t)
2 α

n

(
g
(t)
1

g
(t)
2

∥∇f(x1;W
(t))∥2F − ∥∇f(x2;W

(t))∥2F

))
(i)

≤ exp

(
−g

(t)
2 α

n

(
g
(t)
1

g
(t)
2

· γ
2p

C1
− C1p

))

= exp

(
−g

(t)
2 αγ2p

C1n

(
g
(t)
1

g
(t)
2

− C2
1

γ2

))
. (15)

Inequality (i) uses (14). This bounds for the first term in (13).
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For the second term, we again use Lemma 9: we have for any i ̸= k,

|⟨∇f(xi;W ),∇f(xk;W )⟩| ≤ C1

(
∥µ∥2 +

√
p log(n/δ)

)
. (16)

This allows for us to bound,

exp
(
−α

n

∑
k>1 y1ykg

(t)
k ⟨∇f(x1;W

(t)),∇f(xk;W
(t))⟩

)
exp

(
−α

n

∑
k ̸=2 y2ykg

(t)
k ⟨∇f(x2;W (t)),∇f(xk;W (t))⟩⟩

)
(i)

≤ exp

α

n

∑
k ̸=1

g
(t)
k |⟨∇f(x1;W

(t)),∇f(xk;W
(t))⟩|+ α

n

∑
k ̸=2

g
(t)
k |⟨∇f(x2;W

(t)),∇f(xk;W
(t))⟩|


(ii)

≤ exp

α

n

∑
k ̸=1

g
(t)
k · C1

(
∥µ∥2 +

√
p log(n/δ)

)
+

α

n

∑
k ̸=2

g
(t)
k · C1

(
∥µ∥2 +

√
p log(n/δ)

)
(iii)

≤ exp

(
2
α

n

n∑
k=1

g
(t)
k · C1

(
∥µ∥2 +

√
p log(n/δ)

))
= exp

(
2C1α

(
∥µ∥2 +

√
p log(n/δ)

)
Ĝ(W (t))

)
. (17)

Inequality (i) uses the triangle inequality. Inequality (ii) uses that g(t)k ≥ 0 for all k ∈ [n] and
eq. (16). Inequality (iii) again uses that g(t)k ≥ 0.

Finally, for the third term of (13), we have

exp

(
HC1pα

2

√
m

∥∇L̂(W (t))∥2
)

(i)

≤ exp

(
HC2

1p
2α2

√
m

Ĝ(W (t))

)
(ii)

≤ exp
(
α
√
pĜ(W (t))

)
. (18)

Inequality (i) uses Lemma 8, while (ii) uses that for C > 1 sufficiently large, by Assumption (A5)
we have HC2

1p
2α/

√
m ≤ √

p. Putting (15), (17) and (18) into (13), we get

At+1 ≤ At · exp

(
−g

(t)
2 αγ2p

C1n

(
g
(t)
1

g
(t)
2

− C2
1

γ2

))
× exp

(
2C1α

(
∥µ∥2 +

√
p log(n/δ)

)
Ĝ(W (t))

)
· exp

(
α
√
pĜ(W (t))

)
≤ At · exp

(
−g

(t)
2 αγ2p

C1n

(
g
(t)
1

g
(t)
2

− C2
1

γ2

))
× exp

(
2C1α

(
∥µ∥2 + 2

√
p log(n/δ)

)
Ĝ(W (t))

)
. (19)

We now consider two cases: in the first case, the ratio g
(t)
1 /g

(t)
2 is relatively small, in this case

we will show that the exponential loss ratio will not grow too much for small enough step-size α.
In the second case, if the ratio g

(t)
1 /g

(t)
2 is relatively large, then the first exponential term in (19) will

dominate and cause the exponential loss ratio to contract.
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Case 1 (g(t)1 /g
(t)
2 ≤ 2C2

1
γ2 ): Continuing from (19), we have

At+1 ≤ At exp

(
−g

(t)
2 αγ2p

C1n

(
g
(t)
1

g
(t)
2

− C2
1

γ2

))
exp

(
2C1α

(
∥µ∥2 + 2

√
p log(n/δ)

)
Ĝ(W (t))

)
(i)

≤ At exp

(
g
(t)
2 C1αp

n

)
exp

(
2C1α

(
∥µ∥2 + 2

√
p log(n/δ)

)
Ĝ(W (t))

)
(ii)

≤ At exp

(
C1αp

n

)
exp

(
2C1α

(
∥µ∥2 + 2

√
p log(n/δ)

)
Ĝ(W (t))

)
(iii)

≤ 2
g
(t)
1

g
(t)
2

exp

(
C1αp

n

)
exp

(
2C1α

(
∥µ∥2 + 2

√
p log(n/δ)

))
= 2

g
(t)
1

g
(t)
2

exp
(
C1α

( p
n
+ 2∥µ∥2 + 4

√
p log(n/δ)

))
(iv)

≤ 4C2
1

γ2
exp

(
C1α

( p
n
+ 2∥µ∥2 + 4

√
p log(n/δ)

))
(v)

≤ 4C2
1 exp(1/8)

γ2
≤ 8C2

1

γ2
.

In (i) we use that g(t)i ≥ 0, while in (ii) we use that |g(z)| ≤ 1. In (iii), we use Fact 22 and that
Ĝ(W ) ≤ 1. In (iv), we use the Case 1 assumption that g(t)1 /g

(t)
2 ≤ 2C2

1/γ
2. Finally, in (v), we take

C > 1 sufficiently large so that by the upper bound on the step-size given in Assumption (A5), we
have,

C1α
( p
n
+ 2∥µ∥2 + 4

√
p log(n/δ)

)
≤ 1

Hn
+

6

C1H
≤ 1

8
,

where we have used Assumption (A2) and assumed without loss of generality that H ≥ 1.
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Case 2 (g(t)1 /g
(t)
2 >

2C2
1

γ2 ): Again using the bound in (19), we have that

At+1

≤ At · exp

(
−g

(t)
2 αγ2p

C1n

(
g
(t)
1

g
(t)
2

− C2
1

γ2

))
· exp

(
2C1α

(
∥µ∥2 + 2

√
p log(n/δ)

)
Ĝ(W (t))

)
= At exp

(
−g

(t)
2 αγ2p

C1n

(
g
(t)
1

g
(t)
2

− C2
1

γ2

))

× exp

(
2C1α

(
∥µ∥2 + 2

√
p log(n/δ)

)
g
(t)
2 · 1

n

n∑
i=1

−g
(t)
i

g
(t)
2

)
(i)

≤ At exp

(
−g

(t)
2 αγ2p

C1n

(
g
(t)
1

g
(t)
2

− C2
1

γ2

))

× exp

(
2g

(t)
2 C1α

(
∥µ∥2 + 2

√
p log(n/δ)

)
·max

{
2,

16C2
1

γ2

})
(ii)
= At exp

(
−g

(t)
2 α

[
γ2p

C1n

(
g
(t)
1

g
(t)
2

− C2
1

γ2

)
− 32C3

1

γ2

(
∥µ∥2 + 2

√
p log(n/δ)

)])
(iii)

≤ At exp

(
−g

(t)
2 α

[
C1p

n
− 32C3

1

γ2

(
∥µ∥2 + 2

√
p log(n/δ)

)])
(iv)

≤ At ≤
8C2

1

γ2
.

In (i) we use the induction hypothesis that At ≤ 8C2
1/γ

2 together with Fact 22. Equality (ii) uses
that C1 > 1 and that γ < 1. In (iii), we use the Case 2 assumption that g(t)1 /g

(t)
2 ≥ 2C2

1/γ
2.

Finally, in (iv), we use Assumption (A2) so that we have p ≥ Cn∥µ∥2 ≥ 128C2
1

γ2 n∥µ∥2 and that

p ≥ Cn2 log(n/δ) ≥
(
128C2

1
γ2 n

√
log(n/δ)

)2
and also the fact that g(t)2 ≥ 0.

This completes the induction that for all times t ≥ 0, the ratio of the exponential losses is at
most 8C2

1/γ
2. Using (10) completes the proof.

A.5. Proof of Lemma 12

We remind the reader of the statement of Lemma 12.

Lemma 23 There is an absolute constant C2 > 1 such that for C > 1 sufficiently large, on a good
run we have that for all t ≥ 0,

∥W (t)∥F ≤ ∥W (0)∥F + C2α

√
p

n

t−1∑
s=0

Ĝ(W (s)).

Proof By the triangle inequality we have that

∥W (t)∥F =

∥∥∥∥∥W (0) + α
t−1∑
s=0

∇L̂(W (s))

∥∥∥∥∥
F

≤ ∥W (0)∥F + α

t−1∑
s=0

∥∇L̂(W (s))∥F . (20)
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Now observe that

∥∇L̂(W (s))∥2F

=
1

n2

∥∥∥∥∥
n∑

i=1

g
(s)
i yi∇f(xi;W

(s))

∥∥∥∥∥
2

F

=
1

n2

 n∑
i=1

(
g
(s)
i

)2 ∥∥∥∇f(xi;W
(s))
∥∥∥2
F
+

∑
i ̸=j∈[n]

g
(s)
i g

(s)
j yiyj⟨∇f(xi;W

(s)),∇f(xj ;W
(s))⟩


≤ 1

n2

 n∑
i=1

(
g
(s)
i

)2 ∥∥∥∇f(xi;W
(s))
∥∥∥2
F
+

∑
i ̸=j∈[n]

g
(s)
i g

(s)
j

∣∣∣⟨∇f(xi;W
(s)),∇f(xj ;W

(s))⟩
∣∣∣


(i)

≤ C1

n2

 n∑
i=1

(
g
(s)
i

)2
p+

∑
i ̸=j∈[n]

g
(s)
i g

(s)
j

(
∥µ∥2 +

√
p log(n/δ)

)
≤ C1

n2
·max
k∈[n]

g
(s)
k

[
n∑

i=1

g
(s)
i p+ n

n∑
i=1

g
(s)
i

(
∥µ∥2 +

√
p log(n/δ)

)]

=
C1

n2

(
p+ n∥µ∥2 + n

√
p log(n/δ)

)
·max
k∈[n]

g
(s)
k

[
n∑

i=1

g
(s)
i

]
,

where (i) follows by Lemma 9. Now note that since p ≥ Cn∥µ∥2 and p ≥ Cn2 log(n/δ) by
Assumption (A2), we have that,

∥∇L̂(W (s))∥2F ≤ 3C2
1p

n

(
max
k∈[n]

g
(s)
k

)
Ĝ(W (s)).

Next note that by the loss ratio bound in Lemma 11 we have that

max
k∈[n]

g
(s)
k ≤ Cr

n

n∑
i=1

g
(s)
i = CrĜ(W (s)).

Plugging this into the previous inequality yields

∥∇L̂(W (s))∥2F ≤ 3C2
1Crp

n

(
Ĝ(W (s))

)2
.

Finally, taking square roots, defining C2 :=
√
3C2

1Cr and applying this bound on the norm in
Inequality (20) above we conclude that

∥W (t)∥F ≤ ∥W (0)∥F + C2α

√
p

n

t−1∑
s=0

Ĝ(W (s)),

establishing our claim.
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A.6. Proof of Lemma 13

Let us restate the lemma for the reader’s convenience.

Lemma 24 For a γ-leaky, H-smooth activation ϕ, and for all C > 1 sufficiently large, on a good
run, for any t ≥ 1,

E(x,ỹ)∼P̃[ỹf(x;W
(t))]

∥W (t)∥F
≥ γ2∥µ∥2

√
n

8max(
√
C1, C2)

√
p
,

where C1 and C2 are the constants from Lemma 5 and Lemma 12, respectively.

Proof Using the refined upper bound for the norm of the weights given in Lemma 12, we have that,

∥W (t)∥F ≤ ∥W (0)∥F + C2α

√
p

n

t−1∑
s=0

Ĝ(W (s)). (21)

To complete the proof, we want to put together the bound for the unnormalized margin on clean
samples given by Lemma 10 with the upper bound on the norm given in (21). First, let us recall the
definition of the quantity ξi first introduced in (the proof of) Lemma 10,

ξi = ξ(W (s), xi, x) =
1

m

m∑
j=1

ϕ′(⟨w(s)
j , x⟩)ϕ′(⟨w(s)

j , xi⟩) ∈ [γ2, 1].

Since ξi ∈ [γ2, 1] for all i ∈ [n] and s ∈ {0, 1, . . .}, and E(x,ỹ)∼P̃[ỹx] = µ, by (E.3) and (E.4), we
have

E(x,ỹ)∼P̃[ξi⟨yixi, ỹx⟩] ≥

{
γ2

2 ∥µ∥
2, i ∈ C,

−3
2∥µ∥

2, i ∈ N .
(22)

This allows for us to derive a lower bound on the increment of the unnormalized margin, for any
s ≥ 0:

E(x,ỹ)∼P̃[ỹ(f(x;W
(s+1))− f(x;W (s)))]

(i)

≥ α

n

n∑
i=1

g
(s)
i

[
E[ξi⟨yixi, ỹx⟩]−

HC2
1p

2α

2
√
m

]
(ii)

≥ α

[
1

n

∑
i∈C

g
(s)
i · γ

2

2
∥µ∥2 − 1

n

∑
i∈N

g
(s)
i · 3

2
∥µ∥2 − HC2

1p
2α

2
√
m

Ĝ(W (s))

]

=
αγ2∥µ∥2

2

[(
1− HC2

1p
2α

2γ2∥µ∥2
√
m

)
Ĝ(W (s))−

(
1 +

3

γ2

)
· 1
n

∑
i∈N

g
(s)
i

]
(iii)

≥ αγ2∥µ∥2

2

[(
1− 2Crη

(
1 +

3

γ2

)
− HC2

1p
2α

2γ2∥µ∥2
√
m

)
Ĝ(W (s))

]
(iv)

≥ αγ2∥µ∥2

8
Ĝ(W (s)). (23)
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Above, inequality (i) uses Lemma 10, while (ii) uses (22). Inequality (iii) uses the fact that the
loss ratio bound given in Lemma 11 implies,

∑
i∈N

g
(t)
i ≤ |N | ·max

i
g
(t)
i =

|N |
n

n∑
k=1

max
i

g
(t)
i ≤ Cr · |N | · Ĝ(W (t)) ≤ 2CrηnĜ(W (t)). (24)

The last inequality (iv) follows by Assumption (A4) so that the noise rate satisfies η ≤ 1/C ≤
[8Cr(1 + 3γ−2)]−1, and since the assumption (A5) implies HC2

1p
2α/(2γ2∥µ∥2) ≤ 1/4 for C > 1

sufficiently large.
We provide one final auxiliary calculation before showing the lower bound on the normalized

margin. By Equation (11) we have |f(xi;W (0))| ≤ 1 for all i. Using the following lower bound on
the derivative of the logistic loss, −ℓ′(yif(xi;W )) ≥ 1

2 exp(−|f(xi;W )|), we therefore have

Ĝ(W (0)) ≥ 1

2
exp(−1) ≥ 1

6
. (25)

Using this along with Lemma 4, we have that

∥W (0)∥F ≤ 2ωinit
√
mp ≤ 2α ≤ α

√
C1p/nĜ(W (0)), (26)

where we have used the assumption (A6) that ωinit
√
mp ≤ α and that Assumption (A2) implies

p/n is larger than some fixed constant. With this in hand, we can calculate a lower bound on the
normalized margin as follows. First, note that since E(x,ỹ)∼P̃[ỹf(x;W

(0))] = 0, we can use (23) to
get,

E(x,ỹ)∼P̃[ỹf(x;W
(t))]

∥W (t)∥F
=

E[ỹf(x;W (0))] +
∑t−1

s=0 E[ỹ[f(x;W (s+1))− f(x;W (s))]

∥W (t)∥F

≥
αγ2∥µ∥2

∑t−1
s=0 Ĝ(W (s))

4∥W (t)∥F
. (27)

Now consider two disjoint cases.

Case 1 (∥W (t)∥F ≤ 2∥W (0)∥F ): In this case, by using (27) we have that,

E(x,ỹ)∼P̃[ỹf(x;W
(t))]

∥W (t)∥F
≥

αγ2∥µ∥2
∑t−1

s=0 Ĝ(W (s))

8∥W (0)∥F
(i)

≥
αγ2∥µ∥2

∑t−1
s=0 Ĝ(W (s))

8α
√

C1p/nĜ(W (0))

(ii)

≥ γ2∥µ∥2
√
n

8
√
C1p

where (i) uses (21) and (ii) uses that
∑t−1

s=0G(W (s)) ≥ G(W (0)). This completes the proof in this
case.
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Case 2 (∥W (t)∥F > 2∥W (0)∥F ): By (21), we have the chain of inequalities,

2∥W (0)∥F < ∥W (t)∥F ≤ ∥W (0)∥F + C2α

√
p

n

t−1∑
s=0

Ĝ(W (s)).

In particular, we have C2α
√

p/n
∑t−1

s=0 Ĝ(W (s)) > ∥W (0)∥F , and so substituting the preceding
inequality into (27) we get,

E(x,ỹ)∼P̃[ỹf(x;W
(t))]

∥W (t)∥F
≥

αγ2∥µ∥2
∑t−1

s=0 Ĝ(W (s))

4∥W (0)∥F + 4C2α
√

p/n
∑t−1

s=0 Ĝ(W (s))

≥
αγ2∥µ∥2

∑t−1
s=0 Ĝ(W (s))

8C2α
√

p/n
∑t−1

s=0 Ĝ(W (s))

=
γ2∥µ∥2

√
n

8C2
√
p

,

completing the proof.

A.7. Proof of Lemma 14

Lemma 25 For a γ-leaky, H-smooth activation ϕ, provided C > 1 is sufficiently large, then on a
good run we have for all t ≥ 0,

∥∇L̂(W (t))∥F ≥ γ∥µ∥
4

Ĝ(W (t)).

Moreover, any T ∈ N,

1

n

n∑
i=1

1
(
yi ̸= sgn(f(xi;W

(T−1)))
)
≤ 2Ĝ(W (T−1)) ≤ 2

(
32L̂(W (0))

γ2∥µ∥2αT

)1/2

.

In particular, for T ≥ 128L̂(W (0))/
(
γ2∥µ∥2αε2

)
, we have Ĝ(W (T−1)) ≤ ε/2.

Proof In order to show a lower bound for ∥∇L̂(W (t))∥F = supU :∥U∥F=1⟨−∇L̂(W (t)), U⟩, it
suffices to construct a matrix V with Frobenius norm at most one such that ⟨−∇L̂(W (t)), V ⟩ is
bounded from below by a positive constant. To this end, let V ∈ Rm×p be the matrix with rows

vj = ajµ/∥µ∥. (28)

Then ∥V ∥F = 1 (since aj = ±1/
√
m), and we have for any W ∈ Rm×d,

⟨∇f(xi;W ), V ⟩ =
m∑
j=1

ajϕ
′(⟨wj , x⟩)⟨vj , x⟩ =

〈
µ

∥µ∥
, x

〉
1

m

m∑
i=1

ϕ′(⟨wj , x⟩). (29)

Now, by Events (E.3) and (E.4), we have that{
yi⟨µ, xi⟩ ≥ 1

2∥µ∥
2, i ∈ C,

|⟨µ, xi⟩| ≤ 3
2∥µ∥

2, i ∈ N .
(30)
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Since ϕ′(z) ≥ γ > 0 for all z, (29) implies we have the following lower bound for any W ∈ Rm×d,

yi⟨∇f(xi;W ), V ⟩ ≥

{
γ
2∥µ∥, i ∈ C,
−3

2∥µ∥, i ∈ N .
(31)

This allows for a lower bound on ⟨−∇̂L(W (s)), V ⟩, since

⟨−∇̂L(W (s)), V ⟩ = 1

n

n∑
i=1

g
(s)
i yi⟨∇f(xi;W

(s)), V ⟩

(i)

≥ 1

n

∑
i∈C

g
(s)
i · γ

2
∥µ∥ − 1

n

∑
i∈N

g
(s)
i · 3

2
∥µ∥

=
γ∥µ∥
2

[
Ĝ(W (s))−

(
1 +

3

γ

)
1

n

∑
i∈N

g
(s)
i

]
(ii)

≥ γ∥µ∥
2

[
Ĝ(W (s))−

(
1 +

3

γ

)
· 2CrηĜ(W (s))

]
(iii)

≥ γ∥µ∥
4

Ĝ(W (s)). (32)

Inequality (i) uses (31), while (ii) uses the previously-established inequality (24). Finally, inequal-
ity (iii) above uses Assumption (A4) so that the noise rate satisfies η ≤ 1/C ≤ [4Cr(1 + 3/γ)]−1.
We can therefore derive the following lower bound on the norm of the gradient,

for any t ≥ 0, ∥∇L̂(W (t))∥F ≥ ⟨∇L̂(W (t)),−V ⟩ ≥ γ ∥µ∥ Ĝ(W (t))

4
. (33)

We notice that the inequality of the form ∥∇̂L(W )∥ ≥ cĜ(W ) is a proxy PL inequality, where the
proxy loss function is Ĝ(W ) (Frei and Gu, 2021). We can therefore mimic the smoothness-based
proof of Frei and Gu (2021, Theorem 3.1) to show that Ĝ(W (T−1)) ≤ ε for T = Ω(ε−2). By
Lemma 8, the loss L̂(W ) has C1p(1 +H/

√
m)-Lipschitz gradients. In particular, we have

L̂(W (t+1)) ≤ L̂(W (t))− α∥∇L̂(W (t))∥2F + C1pmax

{
1,

H√
m

}
α2∥∇L̂(W (t))∥2F . (34)

In particular, since Assumption (A5) requires α ≤ 1/
(
2max

{
1, H√

m

}
C2
1p

2
)

, we have that

∥∇L̂(W (t))∥2F ≤ 2

α

[
L̂(W (t+1))− L̂(W (t))

]
.

Telescoping the above sum and scaling both sides by 1/T , we get for any T ≥ 1,

γ2∥µ∥2

16

1

T

T−1∑
t=0

Ĝ(W (t))2
(i)

≤ 1

T

T−1∑
t=0

∥∇L̂(W (t))∥2F ≤ 2L̂(W (0))

αT
. (35)

Inequality (i) uses the proxy PL inequality (33). Finally, note that since |ℓ′′| ≤ 1, an identical
calculation to that of (7) shows that the loss Ĝ(W ) has C1p(1 +H/

√
m)-Lipschitz gradients, and

since α ≤ 1/(2max(1, H/
√
m)C1p

2), we therefore have

Ĝ(W (t+1))− Ĝ(W (t)) ≤ −α

2
∥∇Ĝ(W (t))∥2F .
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In particular, the loss Ĝ(W (t)) is a decreasing function of t, and hence Ĝ(W (t))2 is a decreasing
function of t. Therefore, by (35),

Ĝ(W (T−1)) = min
t<T

Ĝ(W (t)) ≤ 1

T

T−1∑
t=0

Ĝ(W (t)) ≤

√
32L̂(W (0))

γ2∥µ∥2αT
≤ ε/2, (36)

where in the last inequality we use that T ≥ 128L̂(W (0))/
(
γ2∥µ∥2αε2

)
. The proof is completed

by noting that 1(z ≤ 0) ≤ −2ℓ′(z).

Appendix B. Non-NTK results, Proof of Proposition 2

For the reader’s convenience, we restate Proposition 2 here.

Proposition 26 Under the settings of Theorem 1, we have for some absolute constant C > 1 with
probability at least 1− 2δ over the random initialization and the draws of the samples,

∥W (1) −W (0)∥F
∥W (0)∥F

≥ γ∥µ∥
C

.

Proof We construct a lower bound on ∥W (1) −W (0)∥F using the variational formula for the norm,
namely ∥W (1) −W (0)∥F ≥ ⟨W (1) −W (0), V ⟩ for any matrix V with Frobenius norm at most 1.
By definition,

⟨W (1) −W (0), V ⟩ = α⟨−∇L̂(W (0)), V ⟩.

By Lemmas 4 and 5, a good run occurs with probability at least 1− 2δ. On a good run we can use
the results in Lemma 14. In particular, with the choice of V given in eq. (28), we have,

∥W (1) −W (0)∥F ≥ ⟨W (1) −W (0), V ⟩

= α⟨−∇L̂(W (0)), V ⟩
(i)

≥ αγ∥µ∥
4

Ĝ(W (0))

(ii)

≥ αγ∥µ∥
24

,

where inequality (i) uses eq. (33) and the last inequality (ii) uses (25). Thus, by Lemma 4, we have

∥W (1) −W (0)∥F
∥W (0)∥F

≥ αγ∥µ∥
48ωinit

√
mp

≥ γ∥µ∥
48

,

where the last inequality uses Assumption (A6).
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